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Abstroact

A numerical method for the solution of the Euler
cguations of gas dynamies using aiisotropic grid re
finetnent of an unstructured, hexahedron Lype erid
15 presented, The discontinuous ralerkin finite al-
cinent methad is nsed te solve the Euler equations
in three dimensions. Special attention 1= paid to the
data structure apd searching algorithme necessary
feor efficient caleulation eu bighly irregular grids ob-
talned with local grid refinement. The method s
demonstrated with caleulations of rransoenic flow oo
the ONTTRA MG wing.

Introduction

Aerurace selusions of complicated three-dimensional
fows frequently can only be obtamed with reason-
gble efficiency uwsing grid adaptation. Several types
of grid adaptation are pessible, the mast important
methods far compressible fow are locel grid refines
ment [A-refinement) and methods which genstate a
completely gew grid based on infarmation about the
flew solntion (r-refinement), One of the main hene-
tits of local grid refinement is that one dogs not havs
global constraints on the grid genesration. In this
paper & new grid adaptation methad for the thres-
dimensional Euler squativas of gas dynamics will be
discussed. This work i1s part of a larger project aimed
at ohiaining time accurate solutions of viscous fows
using Large Eddy Simulations. A basic slement of
the adaptation method is therefore that it cen be
gasily axtended to viscous fows:

The aumerical method i a combination of local
grid refinement of hexahedsal cells with the Die-
continuous Galerkin (TVG) finite element method.
The grid adaptation is done independesntly in all
three directicas to allow for maximum flexibility,
Many important flow phenomena, such as shocks
aud shear lavers, are locally pssudo two-ditnensional
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and amsotropic grid refinemsnl & ewore eticlent m
thiese cases than sorropic refinement,

Until now rpost of the unstrustured algorichms far
the Euler and Navier-Stokes cguarions use wetrahe
dral elements, for a raview (8] The use of hexaliedral
unstructured grids is a more recene development, e.g.
[1]. Aexahedrons suffer less from loss of accuracy due
1o anisottopic refinerent than tetrabedrons, Hexa
Liedral cells are mare accuratd on highly sieetelicd
gridy which wce necessary for future applications Lo
viscots flows, Tn arder Lo deal with complicated ze
ometries, elemeants such as prisems and Letrahedrous
are used to deal efficiently with topalagical degenera-
cies. Anadditional benelit of hexahadrons is the face
that the mital coarse grid can be provided by stau-
dard multi-block grd generators which are widely
avatiable

The data serusture for A-refinsment is consider-
ably more complicated than for r-refinement. [L was
found that it is more efficient 1o replace the com-
monly used cell based actras data structure with 2
cell face based data structure. Espacially when oue
does not want to lmposs restrictlons on the numhbear
of mewghboring cells. The desceiption of this data
structure 15 given special astention in this paper

The use of highly ireegular unstructured grids puts
severs dermands on the ascuracy of the How solver
One of the more difficule prablems an this Lype of
grids iz tha caloulation of the flow gradient, required
zo make the scheme second ocder acvurats and also
for futuze caloulations of vissous flows. The moest
populze method is to use of Gauss’ identity to esti-
mate the gradient. but this mnethod requires a cerfain
grid regulanity to be accurate.

An alternative is prosentes by the Discontinuens
Galerkin (DG) fAnite element method, as proposed
by Cockburn and Shu. (5. 8, 7. They proved that
this method zatisfes 3 maximum principle for multi-
dimensional scalar hypecbolic conservation laws and
15 TVH stakle. The DG method i o mibcbure of o
finite volume and finite element msathod., In cach
cell the fAow field is locally exparnded in a palyno-



mial ‘apd eguations for the polynongial cocticients
are ohlained.

The DG methed therefore not anly salves eqna-
tions for the fow feld, but also for the moments
of the flow field. No information from neighboring
cells is required to ralenlate the flow gradient and a
completely lecal scheme 15 obtained which does pot
lpse sccuracy on lighly ircegular grids, such as those
pbrained with amsatropic goid refinement  Due to
sl local series expansion of the How field the DG
methad does oot have any difficulty with hanging
aades, which aceur with lacal grid refinement. One
daes pol have Lo jpvert o large mass matelx as is
required with node hased fntte element methods,

The local nature of the discretization makes it
pasy Lo mix differedl Lypes of elotnonts, ex, hesxa-
hedroms, prisms and tetrahedrans. The discontin-
uous Gralerkin method, tagether with Runge-HWutta
Litre intcgration, 15 an excellent candidate for par
allel r.nrnpul.inp_, due Lo it's local behavier. A disad-
vantage of the THE merhad 15 that it requires mars
[ENLSIN LY becauss 1t 1s NECEsS5ary To SLore several moe
ments of the How field. This does not have to be
a limitation because grid adaplation will generally
reduce the memory raquirements significant]y,

The DO method bas unti] now primarily been
nsed in two=dimensions. Cockburn and Shu applicd
the methad on rriangle hased prids, [6], while Lin
and Chin [12] and Bey and Oden [3] used quadni-
lataral eglls. The extension of the DG method 10
three-dimensional flow will he disenseed in this pa-
wer,

The ontline of the paper is as follows. First, the
discontinucus (zalerkin method will be discussed for
the three-dimensional Buler cyuations of gas dy-
narnics. Mext. the grid adaptation procedure will
ve discussed and an overview of the dara structure
and searching algorithms necessary for amisotropic
grid refinement with hexshedral tvps cells will be
ziven. Finally, the grid adaptation algorithm will be
demonstrated with calcnlations of rransonic fow on
the ONERA M6 wing.

Governing Equations

The Euler eguations for inviscid gzs dynamics in
canservation form can be expressed as:

el 7
—Uix.t1—
gt gy
fx.8) = 2% (0,T), with inilial condition Ulx, 0) =
Ualx), x £ £} and heundary condition Ulx, 1) =
BT U, ) (x,t) € 85w (0.T); where B denotes the
howndary cperator and U, the prescribed boundary

F/(U) =10, (

st

data. Hers (! & #%is an open domain with boundary
G 2 and ! £ (0.7 represents Lime. The sur-
mation convention is used an repeated indices. The
vectors with conserved flow variables U : § — R*

and fluxes ¥7, j = {1.2,3}; F* . R® R5, are
defined as:
i ' Fs
U= g Fii= pujuy - piy
pE w(pF 4+ p)

where o, p and F denote the densily, pressure and
specific tatal rnrrgy and o, the velocity in the Carte-
sian coordinate dieections =z, (1,2,3) aund &
the Kronecker delta symhbaol,  This set of equa-
tons 15 completed with the aquacion of stata: p =

(4—1)pl £ - : wiui ), with v the ratuo of specific heats,

Discontinuous Galerkin

tion

Approxima-

The discontinuous Galeekin apprositaation of the
FEuler squaticng is defined by the following steps:
Suppose the open dorwain 12 15 o polyhedron and
denote by T, a triangulation of @ into a disjunct
set of palvhedrans I, ) & N7 such thar LK, =
(1. Each pelvhedron K has n faces ¢, ¥ &8 N7
with Ujelyr = 61 C E. Bach face e can conneed
to multiple fazes r‘.‘;(.. The faces 2. are split into
subfaces sg g = 2% Meh The faces s ., therefare
always connect to two nelghbonng cells i £ "This
zreatly facilitates the update of the cell face Duxes:
The boundary faces o, C A0 are denoted b As
bastc eletents hexahedrons (n = 6) areused, but n
seder ta deal with topolagically degencrated casas,
hexahedrons with degenerated sdges, such as prisms
and terrahedrons, are also used when necessary.
Fach of the slements K £ 7y 1s subparametri-
cally mapped into the cubic mastar element & =
[—1.1 = [=1.1] = [=1.1], with local coordinstes
—1 =< £ n,¢ £ 1, using the standard Linear fintte

slement shape functions:

A
Frox(Emi¢) = w8, m 0,

with o508 . () trilinear alamens shave funetions and
X the coordinates of the corner ponts of the hex-
ahedron A,

Diafine P*{ &) as the space of polvnomial functions
of degree < k on the master elament K- P""I:I:{} =
spﬂn{f;‘.i__.-l_’i, 7,60, = 0, --. M} Define PR(K) as
the space of {unctions whose mages vader P are



funclions i P*(K); P¥(
Fioa=0, M)

Defisie Vi{K) = {P £ [t* - with sach component
p € P5(K)], then Ufx,t) |5 can be approximated
by Unix.t) € VE(K) = C0, T as.

M= 531&:1{0_5';:1 — a_:.:- o

A
Uplxt) = 3 Unlt)om(x) (2)

=g

& majer difference with standard node based
Calerkin finite clement metheds 15 that the expan-
sion ol U is local in each clement, without any conti-
ity across alemnent boundaries, This bas as mpor-
Lupt benefit that hanging nodes, which frequently
appear alter f-refinement, do not give any compli-
catiang

A weal {urmulstion of the Buler squations is
oblained by mulliplyisg cquation (1) with Wy &
"I..-"::“*."]} integrating over the elerment K, and re-
pluging the cxact solution U with its approximation

Un & VK= CY 0, T):

Find U, & VHEK) x CHO.T), such that
Un(x,0) = Ua(x)|x € VEK) and for YW, £
VK

& L W0 Un(x, )0 = =37, [, Wl{xin"(x)
F{ULdS — E. Jo WE )" (x)F(B(Us, Uu))ds

+ [ VW () F( Uy Jd2,

(3)
with F = F¥ 7 = {1, 2,3} and n the unit cutward
normal vector at the faces ¢y and by In this paper
kis resrricted to one.

Due to the fact that the polvnomial basis
Tuneticons .F'k{!;'] are discomtinueus across element
boundaries it is necessary 1o replase the dux with 2
monatone s, h[Um W) U””KJ‘] which s con-
sistent, (LT, U) = F(U) = B(U), 7] Here
Tintl} gnd 1resrii) d{:u{_:l-l;-: the velue of U at 8K
taken =5 the limit from the interior &nd exterior of
K. The use of the monotons Lipschitz Sux b intre-
duces upwinding into the Galerkin method by solw-
ing the (approximate) Riemsano problem given by
(UintE) geeiKly Suitable fAukes are these from
Godunov, Boe. Tax-Friedrichs and Osher. In this
papsr the Osher approximate Riemann solver [14] s
used, bevause of it's good shock capturing capakil-
ilies, and ihe possibility to easily modidy the Rie
mann prablem to mccount for boundary conditions.
An tmportant additional reasom for the use of the
Oshier scheme is that 14 gives ap exact solunion for
a steady contact discontinuily, aod therefore it has

2 very low numerical dissipation in boundary lay-
ers, 18], which is important for future extension of
the algorithm to the Navier-Stokss cquations, The
Osher approximares Rismann aolver is defined as:

hf:_. [ T::\.;-'K LT st A l.l _._. %f -'1..-,"; e 1':1 AR
KK .

where Usl, 15 a path in phase space between
U ‘%) and UL = fatails of the ralenlation of
this path |r:.t.-..t.rd.|. i nulti-dimensions can be found

1 [14] At the houndary surface the path Ty musl
'n_ medified to accaunt far houndary conditions, In
this way s Rlemaon intbial-boundary value prablem
15 solved mstead of an initial value peoblom, [14],
and a completely unified and consistent treatment
of the Mux caleulutions s obtaned, both at interior
and extarior faces.

A key elernent of any numerical method for hy-
perholic conservation laws is the |.|r4:w_'uLi-:_|u el G-
cillations around discontinuities wekburen eroal,
17} presented a discontinuous i_:u.lr*:km local projec-
rion method for multi-dimensional scalur conserva-
tion laws, which i£ second arder accurats and sat-
isfies a maximum prociple when combined wich a
TVD Runge-Kutta time integration method [18].
Cockburn et al. (7] used triangular elements and the
extension to quadrilaterals is presented in [3). The
extension to the Euler eguations1s usually done with
s loeal charasteristic decomposition, but in multiple
dunensions this decomposition is anly approximate
and it can not be proven that the linuter satisfies
3 maximum prineiple. Therefoee & slightly dillTer-
ent approach 15 followed zand the multi-dimensional
limiter proposed by Barth and Jesperson (2] iz used
ditestly on the conservative varizbles, This limiter
saves the constderable sxpense of compuring the lo-
czl characteristic decompaosition,

Disfine far sach component {73 of the cell averzge

Ug = m Luxjdﬂ
[:-.15{ T _F:E'ill;l:. pc:llr.rl E"I'}f':'l
["'-f‘\" mex max_{ ':rK' L'rr: ] :

YEIENTK)

with '-.'fK] the ser of neighbaring rells which sat-
isfy sz O si_-.. In order %o maintaln mono-
tonicity the approximate fow feld Ty must satisfy
Us(x) £ [Ug" URSF], ¥x € K, which is accom-



plished with Lhe limiver function @ defined as;

TTin (I.
_L."'

[T . . - = .
= mm(l —”—M—h) if Ul =0 <0

Urauslh) i 1}

-

L. =L

1 i
Here Tge are the vompoocots of Wy at the Gauss
qadratire paints in K, used to evaluate the inte-
grals in equatien (3). The limiter 4 35 applied
wlepeadently o cacl component of the flow field.
o= LT m o= {1,2,3). This is slightly
rabust then using ®x = ming $., bt gives signif-
jeantly less Lluuu-n-'..ﬂ dissipation. The coefficients
wam =41, 23} in equation represent Lhe gra-
1] I Lien (2] L1
dArent of fh'.‘ aw firld with Tespert to the local coor-
B
dinates 1 & This modification of the lecal sradien:
g

wotld violble conservation of Uan K can be

less

which

correcled by modifving the coefficient Uy

Ug = U3 -'nmn{ .l'-,_l:| L [ P X6

the condition
The lirmited fow field

This relation iz abilained from

e [ U300 = Uk
i cetl A is then egual to

3
U t)= 3 Unit}dm(x

me=0

Unfortunetely, Lhe dircel spplication of this limites
can serinusly hamper convergence 1o steady stale
L order to alleviate this problem the madifiza-
Lions proposed by Veoxatakrishnan, which result i
asmoother Hmiter, are used with reasonable success,
For mors details see [197

The equations for Un(t) are new obtamed af-
ter lrensformeation of the iotegrals over K oand K
in equation (3) into mt.ngrzﬂs over the master sle-
ment K. The first integrale [ WITI,40. are cal-
culdted apalytically, which reguires guite some al-
gebra, whersas the other integrals are celculated
with Sauss quadrature sulee. Cockburn et 21 7]
proved that if the quadrature rules for the surfacs
integrals in equation (3) are exact for polvoomials
of degree {2k + 1) and exact for polvnomiais of de-
gree 2k for the volwine integrals then the spatzl
acenraey of the TG methed i= £+ 1. In order to
preserve uniferm few it 1s necessary to use quadra-
ture rules which are exact for polyoomalsof order 3
For & = [ the surface integrals are calculated with
four point Gauss quadrature rules. Thev Tequire
however, special attention to prevent that thew are

-

unnecessarily expensive. A direct application of a
four point Granzs quadracure rols would require four

Tosila . o ey I ey “
alc.ulbf,mu:» of the f_}s.'ler.mr.egral qu Jp_ |8¥|4L,
which 1y the muost expensive pact of the fuw cal-
culation. Thiz number can be reduced to une inle-
gration using the fact that h is a Lipschitz flux and

[ E Lzt K s
uy = | = CHA®Y ) i the sinooth part
of the flaw. The following approximation can then
be ohrained:

R

=i o

where the path T, is the path in phase space be-
twesn the left and right stateat tha call face center,
UK nestRD} g5 ot small, but in
these regions the scheme i3 fiest order wecurile aoy-
way, With this madification the integration of tha
fluxes becomes approximately equally expensive as
for upwind finite volume schemes using an (approx
trrnte) Rlernunn solver,

|8F 1T )8 = f ER dr[ WTds
L el

in shocks

Forzach element & o syvstem of opdinary differen
tial equations 15 now ablalted:

& .
[.'1.-{_1;_'] EIJ}( = B-H

with U a veceor with the moments af the flaw [eald
in each slement U, m = {i},=-- a} and Hg the
right-hiand side of eguatien (3). Tae equations for
£ 174 are integratad in time using the TVD Bunge-
Kutta scheme from Shu (18], For steady stace cal-
culations convergence bs aceelerated using local tme
sLepping

A significant differsnce with node bazed FEM is
that the mass metcix [My] is uncoupled for each
element K and can he sasily tnverted.

Directional Grid Adaptation

The grid adaptation procedure is based on subdivid-
ing ecells independently in cech of thelr three loval
grid directiona. £, noar {. A coarse initial grid is
used, which iz geénerated with a multi-hlack sirue-
tured grid generator. This inivial structured multi-
nlack grid iz transzferred into 2o unstruciured hexa.
bedron zoid, and dsgenerated hexahedrons, such as
prisms and teirahedrons, are used when topolegical
degeneracies make this necessary, This grid is called
root grid. The root grid can alsa be generated di-
rectly, withoutr first using a block-strucrured grid,
hut this iz nat part of the presanl paper. Allsr cal-
culating the flow fiald, the grid celis are split in the
lecal &-direction if:

o

— % tolerancy
HAXy e Th Aoy

(4]



with the seosor function Hj, for the cell K definad
S

o

Ri = (Vik = Vg hgk

s
{E{1, - 8L RIS NELK)
Here M8 18 the lengeh of the cell K an the focal £
direction, V = (g, u, v, w,p}7 the vector with prim-
itive variahles and NS(K) the indices of the neigh-
bortng celle of sell & in the ¢-direction, Equivalent
axpresstufis are used for the p and { directions. This
senent 15 based on the equidistiibution principle, see
for instance Marchant et al. [13! or Hagmneijer [10)
The main advanlage of this sensor 15 that it prevents
diseentipnities; such as shocks, from dopunating the
refipemient sensor, hecause at some point ther ccoll
lempth beeomes so small that other flow features will
start to hecome nporiant,

Euch cell 1s now adapted independently in all
three directions, by dividing the celis which meet
the adaptatiaon criterion inlo two new cells

Data Structure

The success of an unstructured grid adapration alge-
richm strengly depends oo the efficlency of the data
structure. The data structure for fi-type ¢rid adap:
tatlon 15 more complicared than for r-lype adaptla-
tinn, hecause one cell can be connected 1o multiple
netghboring cells. An impaortant crtenon o the de
sign of the data structure 15 that no searching is
required in the caleulation of the flow field. All the
necessary searching to update the data structurs 1
done during the adaptaticn step. This greatly en-
hanees the efficiency of the code, because all the
basic operations then can be vectorized and paral
letized using @ proper coloring and demain decom-
position scheme. Until now, most of the applisations
with hexahedran type cells where restricted to two-
dimnensicnal flaws, where generally s guadires date
structure is used. lo three dimensions this becomes
an octres data structure. An occtres data strusture
15, hawever, mare suited for isotrovic cell refipemenst,
whete each el has sight children, but 1s lnefficient
for apisotropic grid refinement,

An efficient. data structure for the DG method 1=
clbtained using the cell faces instead of cells a5 the
hasic elernant. This has several major advantagss.
‘The primary loop in a2 DG method is the calcula-
tion of the Huxes. which can he dene without any
searching using @ Tace based data structure. A see-
ond benefif of a {ace based data structure versus 2
cell based data structure is that each subface s 4.
can have only twe nelghboring cslls, whereas sach
cell catt have nnlimited neighbors. A luep over cell

faces can therefore be dome witheur ssarching., The
faze hased data structure has some tesemblance with
the edge basad dara siructure cominonly used with
vertex based unstructured algorithms using tetrahe-
drons,

Grid Structure

Fach slement R can be subparametrically mapped
into its master alement . The faces and vertices of
clement K are numbersd uniquely and the topal-
agy of sach clemuent K 13 defined by the coordi-
nates of the vertices and Lhe: mapping Fr. The
following arcays are used to define the grid strus-
Array ICGHeell. n), (n = 1, -, 8] ta store
the addresses of the vertices of the cells and array
IeTreeffeell n), (n = |, <o 4) toy store the eell con-
nectivity, The flest clement of el ree is the addresy
af the parent cell and the second and thied elemenc
wre the addresses of the first and second child, For
ufliciency reasons the type of refinamnent {£ 5 or )
15 also stored.

Due to the dynamic hehavior of the grid, peints
are added and deletsd, it is imporeane o stare the
grid points efficiently. This is dous using an AV L-
tres, for a derailed description of AVL trees see 711]
and [20], The array JG_AV T cantains the addresses
af the'z, yand z-courdinates of the grid points. The
AV L tree uses the same key as proposed in [17], viz.
(21,31, 2:) < (23, 43, 24) I 22 = 23, 00 if ¥ = =4
and 4 < yaor if 1y, = zoand = Yy andon <o

Together with vectars for the ¢, y and z-
rootdinates of the grid points this information is suf-
ficient to describe the grid. The use of an AV L-tree
is very efficient, When a csll is divided it is possibla
to find 1n Q(lega{ V) steps if & wrid point already
saasts i the rree or must be added. Boih insertion
and deletion of an element in the AVT. tree can be
done in Q(logs(N]) eperations, with v the number
of grid paints.

ture:

Establishing Face to Cell Connectivity

The maost difficult part of A-iype grid adaptation on
an unstructursd hexahedral mesh is to'establish che
face o cell connsetivity s ... It iz impractical to
1ty ta datermins in advance the large number of pas-
sible connections, even if anly a lmited number of
neighboring cells 13 allowed, Tha following algorithm
can find all possible connections:

At the root grid level all cell zonpections ave
kpown, because they ran be abtained from the orig-
inal unadapted grid. At this level there is no local
grid refinement,



For all root cell faces thie addresses and face indices
af the fwo cells which connect to ihis cell face are
stored in the array TfTree. Wext, the tree JcTres is
traversed. For each cell face which is the connection
between the two children ¢ells K and K™, i&H-.H.. =
eher M 8 gy = i) the addresses and face ludices
of the left and right children are alse stored in array
FfTrer, The st of these faces and the root cell faces
are called elrmentary faces,

Ta find the rermaining face Lo cell connections cach
clementary face is mapped to [0 1] = [0, 1], Then
lur cach side of the clementary face the tree JeTree
15 traversed to find the local {(#,1) cocrdinates of
e four corners and center of the cell faces of the
children cells wlhich connect to the slementary face
This can be dooe easily using the type of refinement,
£ nor(, and the fare index of the elementary cclh
If necessary the local coordinate system (s'.7) of
reil Tase r:';.{. 19 transformed te the (5, 6] coordimats
svetem of cell face &),

The caordinates of Lhe cornee points and ool face
contars at both sides of the elementary fuee arc
gtored in arreys Maceflevl and FaceRKeyR Tor
hath sides of the cell face also the addresses of the
children are stored in separate binary trecs [fTrecl
and { fireedt, using the cell face center as key. This
part of the algorithm has some similanity to that pre-
posed in [17] to find hanging nedes in 2 node based
finite element methad.  Therr problem is a2 point
search problem, but the determination of the facs
to cell connectivity is & geometrie searching problem
and the alternating digiral tree algorithm iz used.
4.

First for all the cells on the l=ft side of the cell face,
the tres 7 fTree R is traversed to find the cell face at
the cpposite side which has the same corner points
or is completely contained 1o the left cell face. This
can be done in Qlogs( N1} operations: The same is
done for-all the cells at the right ceil face. In order
tio stficiently eliminate face to cell sonnestions which
soeur bwlse, It is nocessary to store the new faze o
cell connections In & binary troe,

After this search most face to fell connections ars
found, but depending on the refinement stratagy it
is possible that ane rell face connects at both sides
e mrore than one cell, Wihis happens it7s face 10 cell
cannection iz not established in the previgus search
and the cell faces for which no connectien could be
found must be split inte two faces on ons of the sides
of the elementary face. By cyclically splitting the
vell faces for which no connection could be found in
5 and t directions and restarting the search finally
all cennections will be found. It is casy to test if
all eell ro face connections are found because their

o

area should add up to one oo both sides, After the
search 15 completed all connections which are found
are added to the tree [fiTea:

The alternative to auhdividion of cell faces wauld
to further subdivide cells, bur shis can easily gener-
ate new faces which vounect to more than one cell.
Thie does not ccour with subdivision of cell faces
and the searching algorithm wall fintsh in a finite
time. The only somplication of using subfaces 13
that they have he acconnted for in the Aux calou-
lation, because now the face o', is subdivided inte
seversl faces instead of one, ﬁfitl‘l bhig algocthm
all face to rell connections can be found and the al-
sorithm can be complesely parallelized, haranss the
determination of the subdivision of sach slementary
face 15 completaly indepeandant from one wnother,

The update of the cell fuce Huxes can now be done
easily tn one loop over the coll faces, without any
difficulty caused by hanging nodes. This algorithin
ean be completely vectonzed and parallelized nsing a
proper colaring and demain decomposition scheme

Diseussion and Results

The grid edaptation algorithm has been tested on
the flow around the ONERA MG wing, [21]. Lhe
ONERA ME wing has a trapezoidal planform with
30° leading 2dge sweep, and a taper ratia of 0.54.
The wing sections are based on the symmetnical
ONERA-D profile with 5% thickness/choed ratio
The wing tip 15 rounded by rarating the tip sec-
tion around ils sy menetcy axds. The freestream Mach
pumber is () 84 and angle of attack is 3.08°,

The grid adaptation was started by first <aleu-
lating 2 steady sclution on the initial grid, which
consisted of 8192 cells and 9441 =vid points, The
arid was subssquently adapted seven times, lnds-
pendently in all three dirsctions and the finat grid
consisted of 195200 cells and 345210 grid noints. See
Table 1 for more details. Figure 1. shows the con-
vargence hiszory of the maximurn pointwise residual.
The spikes indicate the various instancss wnen the
grid was adapted.

Local time stepping was used Lo accelerste con-
vergence. Initially problems were experianced in e
timating the local time step evcurately oo the highly
trreguiar grids which acsur after grid adaptalion.
An efficient algorichm for local time stepping was
abtainad by modifving the procedure discussed by
Barth (4] to the Osher approximate Riamann solver,
This slgorithm gives an accurate prediction of the
lncal time step and the nesessary information about
loical wave speeds can bhe abtained directly from the
Osher scheme. All calculations wers done with a
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Figure 1@ Maxmum poimntwise residual in fow fisld

zeal CFL number of 0.7,

[t can e secn that convergence on the imiual
eoarse grid is rather slow. This is caused by the
slape limiter which 1s activated in the far field, far an
analysis of this problem see [18]. After grid adapta-
kan eonvergenee improves significantly and sppres-
umately 500 rime steps wers sufficient to obtain at
least three orders of magnitude reduction in residual,

The usge of Lhe =ensor fupdélions Rg, equations
(4) and (5), which approximate the gradient of the
priemitive flow variables in all three dizsctions was
nuite effective in capturing the relevant fow features,
(zensrally the most dominane feature is the stagna-
tlon region, especially on the 1mitial coarse grid, bur
shocks and shear lavers were capiured reasonably
well after refinement. An impaortant feature of this
sensor funetion 1= that it i weighted with the la
cal grid distamee, which prevents oue aspect of the
fiowr to constantly dominate the adapiation process.
This is steongly influenced by the power of L8y in
couation b

Figures 2 till @ show the flow field at the upper
surface after the various adapration sters The ini-
tial grid is wery coarse and culy shows a shock at
abont 55% chord. The first three adaplation steps
significantly improve the resolution of the aft shock:
Afver four adaptation steps the forward shock devel-
ops and the solution on Lhe final grd clearly shows
the lambda-shock seruetnre.  Figure 9 shows that
the two shocks merge at 85770 span and separate at
approximately 24% span, The shock structure com-

pares well with the resultz obtained by Rausch gl
al. [13]. The forward shack is weaker than the aft
shock and takes longer to be captured by the grid
adapration process. During sach adaptation slep,
except the first, 153% of the cells with the smallest
indicater funciion were deleted after which the rotal
number of cells was increased with T0% through re-
finement of cells with the largest indicator function,
The adaptation provess was completely automalic,
no user interference was necessarcy.

Figure [0 shaws the final adapted prid which
clearly shows the lambda shock strusturé. Tha mesh
adapls Lo reglons with large How activity and sigmef
icantly bmproves resalution o the shock regiony and
aronnd the tip, Due to the fact that the calealation
was started on a coarse grid it proved vary important
te be able 1o both add and delete cells, hecauss ini
tially the grid s primarily eefined in the stagnation
and rear shock regione which rend ta hecoms aver-
resalved 1o the mnittal adapration stages. [t will he
mate eflicient to start on a foer witial gead, bus this
would require m:llti;rir{ canvergence acceleralion La
obtam o steady imtial solubion. Further improve-
ments in sensor functiens will also contribute to um-
proved efficiency in the geid adaptation process.

The caleulations were dane an a NEC §X.5 2/2
computer 31 NLUW and required appreximarely 3
hours of OPT time and 60 Mwords of man men-
ary. The program runs approximaiely at a soeed of
380 Mfops on & single procassor.

Concluding Remarks

The =xtension of the discantinuous Galerkin method
using haxahedron type cclls to thres dumensional
inviseid., compressible flow has been successfully
demonstrated. It was shown that the DG method
can be combined with amsotropic gnd adaptation
which sigonificantly improved the scourzcy, A now
algorithm te sstanlish face to cell connectivity was
presented which works well with A-refinement of hex-
shedron cells and the DG method. Steady transonic
Aow results of the ONERA MO wing were presented
whick demonsirated che eficiency of the adapiation
algorithm in capturing the lambda shock wave. The
Dix methad 15 a very local scheme and works well
on mighly irregular grids. The sambination of the
DG method with gud adapration lacks promissing
for extension Lo viscous Hows. especlally Large Eddy
Simulation which will require very sophisticated grid
adaptation methods.



Adaptation Step | Cells | Grid Points

L B EE 441

1 14156 176847

2 21010 20601

3 31416 4BT44 |
1 47565 ROTIA

O 72082 128203

fi 100881 200944

i | 5200 345210

Table |, Number of grid points and cells after each
adapration step
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Figure 2. Pressure field on ONERA M6 wing ut Figure 4: FPressure field an ONERA MO wing after
coarse grid two adaptation steps
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Fiure 3: Pressure field on ONERA M8 wing after  Figure 3 Pressure fleld on ONERA ME wing afier
one adaplalion step thres adaptabicn steps



Figure & Pressure field on ONERA MO wing after Figure 5° Pressure field on ONERA MG wing afbor
four adapration steps six adaptaticn steps

Figure 7: Pressure field on ONERA M@ wing after  Figure 3. Pressure field on ONERA M6 wing after
five adaptation sieps zeven zdaptation steps
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Figura 10 Final adapted grid on ONER



